A parameterized multiple-scattering model for microwave emission from dry snow

نویسندگان

  • Lingmei Jiang
  • Jiancheng Shi
  • Saibun Tjuatja
  • Jeff Dozier
  • Kunshan Chen
  • Lixin Zhang
چکیده

Snow water equivalent (SWE) is one of the key parameters for many applications in climatology, hydrology, and water resource planning and management. Satellite-based passive microwave sensors have provided global, long-term observations that are sensitive to SWE. However, the complexity of the snowpack makes modeling the microwave emission and inversion of a model to retrieve SWE difficult, with the consequence that retrievals are sometimes incorrect. Here we develop a parameterized dry snow emission model for analyzing passive microwave data, including those from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) at 10.65 GHz, 18.7 GHz, and 36.5 GHz for SWE estimation. We first evaluate a multiple-scattering microwave emission model that consists of a single snow layer over a rough surface by comparing model calculations with data from two field measurements, from the Cold Land Process Experiment (CLPX) in 2003 and from Switzerland in 1995. This model uses the matrix doubling approach to include incoherent multiple-scattering in the snow, and the model combines the Dense Media Radiative Transfer Model (DMRT) for snow volume scattering and emission with the Advanced Integral Equation Model (AIEM) for the randomly rough snow/ground interface to calculate dry snow emission signals. The combined model agrees well with experimental measurements. With this confirmation, we develop a parameterized emission model, much faster computationally, using a database that the more physical multiple-scattering model generates. For a wide range of snow and soil properties, this parameterized model's results are within 0.013 of those from the multiple-scattering model. This simplified model can be applied to the simulation of the microwave emission signal and to developing algorithms for SWE retrieval. © 2007 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of snow water equivalence inversion technique with simulating model

In this paper, we evaluate the capability of a multi-scattering microwave emission model that including the Dense Media Radiative Transfer Model (DMRT) and AIEM to simulation of dry snow emission with Matrix Doubling approach. We compared the predictions of this model with the ground experimental measurements. The comparison showed that our snow microwave emission model agreed well with the exp...

متن کامل

Modeling the Observed Microwave Emission from Shallow Multi-Layer Tundra Snow Using DMRT-ML

The observed brightness temperatures (Tb) at 37 GHz from typical moderate density dry snow in mid-latitudes decreases with increasing snow water equivalent (SWE) due to volume scattering of the ground emissions by the overlying snow. At a certain point, however, as SWE increases, the emission from the snowpack offsets the scattering of the sub-nivean emission. In tundra snow, the Tb slope rever...

متن کامل

Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model

DMRT-ML is a physically based numerical model designed to compute the thermal microwave emission of a given snowpack. Its main application is the simulation of brightness temperatures at frequencies in the range 1–200 GHz similar to those acquired routinely by spacebased microwave radiometers. The model is based on the Dense Media Radiative Transfer (DMRT) theory for the computation of the snow...

متن کامل

Microwave Emission Model of Layered Snowpacks

A thermal Microwave Emission Model of Layered Snowpacks (MEMLS) was developed for the frequency range, 5 to 100 GHz. It is based on radiative transfer, using six-flux theory to describe multiple volume scattering and absorption, including radiation trapping due to total reflection and a combination of coherent and incoherent superpositions of reflections between layer interfaces. The scattering...

متن کامل

Estimating Snow Accumulation from Insar Correlation Observations a Dissertation Submitted to the Department of Electrical Engineering and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Snow accumulation in remote regions such as Greenland and Antarctica is a key factor for estimating Earth’s ice mass balance. In situ data are sparse, hence it is useful to derive snow accumulation from remote sensing observations, such as from microwave thermal emission and from radar brightness. These data are usually interpreted using electromagnetic models in which volume scattering is the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007